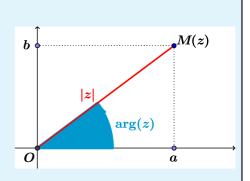
Modules et arguments

1 Rappels


Définition

Soit z le nombre complexe z = a + ib et M le point d'affixe z

- le **module** du nombre complexe z que l'on note |z| est la distance OM ; $|z| = \sqrt{a^2 + b^2}$
- l'**argument** de z noté arg(z) (ou parfois θ) est une mesure de l'angle $(\overrightarrow{u}, \overrightarrow{OM})$. Pour calculer $\theta = arg(z)$, on utilise les relations suivantes :

•
$$\sin \theta = \frac{b}{|z|}$$

Exemple : Calculer le module et un argument de $z=1+\sqrt{3}i$: $|z|=\sqrt{1^2+\sqrt{3}^2}=\sqrt{1+3}=\sqrt{4}=2$ Un argument θ de z doit vérifier : $\cos\theta=\frac{1}{2}$ et $\sin\theta=\frac{\sqrt{3}}{2}$. D'où $\theta=\frac{\pi}{3}$

2 Exercices

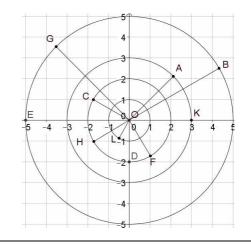
Déterminer graphiquement :

$$\bullet$$
 $|z_A| =$

$$\bullet$$
 $|z_B| =$

$$\bullet$$
 $|z_C| =$

Exercice 1.


$$\bullet |z_D| =$$

$$\bullet$$
 $arg(z_A) =$

•
$$arg(z_D) =$$

•
$$arg(z_G) =$$

•
$$arg(z_K) =$$

Calculer le module de chacun des nombres z suivants.

Calculer les arguments de chacun des nombres z suivants. (de module 1)

Exercice 2.
$$z = 1 + 2i$$
.

Exercice 3.
$$z = -9 + 5i$$
.

Exercice 4.
$$z = -8i$$
.

Exercice 5.
$$z = 3 + 4i$$
.

Exercice 6.
$$z = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$
.

Exercice 7.
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}$$
i.

Exercice 8.
$$z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$
.

Déterminer le module puis un argument de chacun des nombres z suivants.

Exercice 9.
$$z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
.

Exercice 10.
$$z = \frac{3\sqrt{3}}{2} - \frac{9}{2}i$$
.

Exercice 11.
$$z = \frac{5}{\sqrt{2}} - \frac{5}{\sqrt{2}}i$$
.

Exercice 12.
$$z = -\sqrt{3}$$
.

Exercice 13.
$$z = -2\sqrt{6} + 2\sqrt{6}i$$
.