Chapitre 5 : Probabilités : Conditionnement et indépendance

1 Probabilité conditionnelle

1.1 Définition

Définition

Soit P une probabilité sur un univers Ω et soit A un événement de probabilité non nulle. Pour tout événement B, on appelle **probabilité de** B sachant A le réel, noté $P_A(B)$, défini par :

$$P_A(B) = \dots$$

1.2 Propriétés

• P_A est une probabilité, dite **probabilité conditionnelle**, définie sur Ω .

En effet P_A vérifie les propriétés d'une probabilité :

$$P_A(\Omega) = \dots$$

$$P_A(\emptyset) = \dots$$

Et pour tout événements B et C incompatibles, $(B \cap C = \emptyset)$, on a : $P_A(B \cup C) = P_A(B) + P_A(C)$.

- \bullet $P_A(A) = \dots$
- si A et B sont incompatibles alors $P_A(B) = \dots$
- $P_A(\overline{B}) = \dots$

Démonstration:.....

1.3 Probabilité de $A \cap B$

Soit A et B des événements de probabilité non nulle, on a :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 donc

de même :

$$P_B(A) = \frac{P(A \cap B)}{P(B)}$$
 et par suite :

On en déduit que :

Propriété

Pour tous événements A et B de probabilité non nulle,

$$P(A \cap B) = \dots$$

Remarque : si P(A) = 0 ou P(B) = 0, alors $P(A \cap B) = \dots$

1.4 Représentation par un arbre pondéré

Exemple : tous les élèves de Terminale d'un lycée ont passé un test de certification en Anglais. 80% ont réussi le test. Parmi ceux qui ont réussi le test, 95% n'ont jamais redoublé. Parmi ceux qui ont échoué au test, 2% n'ont jamais redoublé.

On considère les évènements T: « L'élève a réussi le test » et D : « L'élève a déjà redoublé ».

On peut représenter cette expérience à l'aide d'un arbre pondéré, en respectant certaines règles.

Règle 1 : Sur les branches du premier niveau, on inscrit les probabilités des évènements correspondants.

Règle 2 : Sur les branches du deuxième niveau, on inscrit des probabilités conditionnelles.

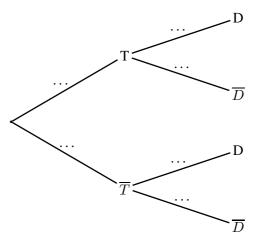
Règle 3 : La somme des probabilités inscrites sur les branches issues d'un même nœud est égale à ...

Règle 4 : Le produit des probabilités des évènements rencontrés le long d'un chemin est égal à la probabilité de

Par exemple, ici : $P(T \cap \overline{D}) = \dots$

Règle 5 : La probabilité d'un évènement est la somme des probabilités des chemins conduisant à cet évènement.

Par exemple, ici : $P(D) = \dots$



2 Formule des probabilités totales

2.1 Exemple

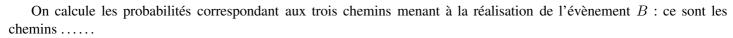
Trois machines M_1 , M_2 , et M_3 réalisent respectivement 20%, 30% et 50% de la production d'une entreprise. On estime à 1,5%, 2% et 1% les proportions de pièces défectueuses produites respectivement par M_1 , M_2 et M_3 .

On choisit une pièce au hasard dans la production.

L'objectif est de calculer la probabilité de l'évènement B: « La pièce est bonne ».

Pour tout entier i de 1 à 3, on note M_i l'évènement : « La pièce est produite par M_i ».

On peut illustrer la situation par un arbre pondéré :



 \overline{B}

B est la réunion de ces évènements deux à deux incompatibles, d'où :

$$P(B) = \dots$$

On peut détailler les calculs dans le tableau suivant :

	В	\overline{B}	
M_1			$P(M_1) = \dots$
M_2			$P(M_2) = \dots$
M_3			$P(M_3) = \dots$
	$P(B) = \dots$	$P(\overline{B}) = \dots$	1

2.2 Cas général : formule des probabilités totales

Si A_1, A_2, \ldots, A_n sont des sous-ensembles non vides de Ω , deux à deux disjoints et dont la réunion est Ω on dit qu'ils constituent \ldots

Théorème (Formules des probabilités totales (admis))

Si A_1, A_2, \ldots, A_n constituent une partition de Ω et B est un événement quelconque de Ω , alors :

3 Indépendance

3.1 Evénéments indépendants

On suppose que A et B sont des événements tels que P(A) et P(B) sont non nulles.

Si le fait que A est réalisé ne change pas la probabilité que B le soit, on dit alors que B est indépendant de A, ce qui signifie que : $P_A(B) = P(B)$.

Puisque $P(A \cap B) = P(A) \times P_A(B)$, il en résulte que $P(A \cap B) = \dots$

Alors
$$P(A) = \dots = \dots$$
, donc

D'où la **définition**:

Définition

Deux événements A et B sont indépendants si et seulement si

.

Dans ce cas, si $P(A) \times P(B) \neq 0$, alors :

$$P_A(B) = \dots$$
 et $P_B(A) = \dots$

Noter que si P(A) = 0 ou P(B) = 0, alors $P(A \cap B) = P(A) \times P(B) = \dots$

Remarque:

Pour des événements A et B de probabilité non nulles, il ne faut pas confondre indépendance et incompatibilité.

"A et B incompatibles" signifie, donc $P(A \cap B) = \dots$

"A et B indépendants" signifie $P(A \cap B) = \dots,$ donc $P(A \cap B) = \dots$

Si A et B sont incompatibles alors ils ne sont pas indépendants et s'ils sont indépendants alors ils

Exemple:

On lance un dé à 6 faces équilibré. On considère les évènements suivants :

A : « le résultat est pair »

B: « le résultat est 2 »

C: « le résultat est supérieur ou égal à 5 »

Les évènements A et B sont-ils indépendants? Les évènements A et C? Les évènements B et C?

