Cours de terminale S Fonction exponentielle

A. OLLIVIER

Lycée Jacques Prevert - Pont-Audemer

2019-2020

	,		•		
h	Δ	^	rè	m	Δ
	C	v		ш	C

Il existe une unique fonction f dérivable sur \mathbb{R} telle que :

Théorème

Il existe une unique fonction f dérivable sur \mathbb{R} telle que :

$$f' = f$$
 et $f(0) = 1$

Cette fonction est appelée

Cette fonction est appelée fonction exponentielle.

Définition
Cette fonction est appelée fonction exponentielle.
On note:

Cette fonction est appelée fonction exponentielle.

On note:

$$\exp: X \in \mathbb{R} \longmapsto \exp(X)$$

Cette fonction est appelée fonction exponentielle.

On note:

$$\exp: X \in \mathbb{R} \longmapsto \exp(X)$$

Cette fonction est appelée fonction exponentielle.

On note:

$$\exp: X \in \mathbb{R} \longmapsto \exp(X)$$

Ainsi pour tout x réel : exp'(x) = exp(x) et exp(0) = 1.

Cette fonction est appelée fonction exponentielle.

On note:

$$\exp: X \in \mathbb{R} \longmapsto \exp(X)$$

Ainsi pour tout x réel : exp'(x) = exp(x) et exp(0) = 1.

La fonction exponentielle est définie et continue sur \mathbb{R} puisqu'elle est dérivable sur \mathbb{R} .

Pour tout réel x, $\exp(x) \neq 0$.

Pour tout réel x, $exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = \dots$$

.....

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Si ϕ a une dérivée nulle sur $\mathbb R$ alors ϕ est une fonction

.

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Or
$$\phi(0) = \dots$$

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Or
$$\phi(0) = \exp(0) \exp(0) = 1$$
;

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Si ϕ a une dérivée nulle sur $\mathbb R$ alors ϕ est une fonction constante.

Or $\phi(0) = \exp(0) \exp(0) = 1$; on en déduit que, pour tout x réel, $\phi(x) = \dots$

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Si ϕ a une dérivée nulle sur $\mathbb R$ alors ϕ est une fonction constante.

Or $\phi(0) = \exp(0) \exp(0) = 1$; on en déduit que, pour tout x réel, $\phi(x) = 1$,

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Or
$$\phi(0) = \exp(0) \exp(0) = 1$$
; on en déduit que, pour tout x réel, $\phi(x) = 1$, soit $\exp(x) \exp(-x) = \dots$

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Or
$$\phi(0) = \exp(0) \exp(0) = 1$$
; on en déduit que, pour tout x réel, $\phi(x) = 1$, soit $\exp(x) \exp(-x) = 1$,

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' = \exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Or
$$\phi(0) = \exp(0) \exp(0) = 1$$
; on en déduit que, pour tout x réel, $\phi(x) = 1$,

soit
$$\exp(x) \exp(-x) = 1$$
, d'où on conclut que

Pour tout réel x, $\exp(x) \neq 0$.

Démonstration : soit ϕ la fonction définie pour tout x réel par $\phi(x) = \exp(x) \exp(-x)$.

La fonction ϕ est dérivable sur $\mathbb R$ comme produit de fonctions dérivables et

$$\phi'(x) = (\exp(x))' \exp(-x) + \exp(x)(\exp(-x))' =$$

$$\exp(x) \exp(-x) - \exp(x) \exp(-x) = 0$$

Si ϕ a une dérivée nulle sur $\mathbb R$ alors ϕ est une fonction constante.

Or $\phi(0) = \exp(0) \exp(0) = 1$; on en déduit que, pour tout x réel, $\phi(x) = 1$,

soit $\exp(x) \exp(-x) = 1$, d'où on conclut que $\exp(x) \neq 0$.

Démonstration du théorème (ROC)						

L'existence d'une telle fonction est admise.

On démontre l'unicité :

L'existence d'une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \operatorname{pour} \operatorname{tout} x.$$

L'existence d'une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \operatorname{pour} \operatorname{tout} x.$$

Alors
$$(u(x))' =$$

L'existence d'une telle fonction est admise

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

$$u(x) = \frac{g(x)}{\exp(x)}$$
 car $\exp(x) \neq 0$ pour tout x .

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \text{ pour tout } x.$$
Alors $(u(x))' = \frac{g'(x) \exp(x) - g(x) \exp'(x)}{(\exp(x))^2}$

L'existence d'une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \text{ pour tout } x.$$
Alors $(u(x))' = \frac{g'(x) \exp(x) - g(x) \exp'(x)}{(\exp(x))^2}$

Alors
$$(u(x))' = \frac{g'(x) \exp(x) - g(x) \exp'(x)}{(\exp(x))^2}$$

L'existence d'une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \operatorname{pour} \operatorname{tout} x.$$

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \text{ pour tout } x.$$
Alors $(u(x))' = \frac{g'(x) \exp(x) - g(x) \exp'(x)}{(\exp(x))^2} = \frac{g(x) \exp(x) - g(x) \exp(x)}{(\exp(x))^2} = 0$

L'existence d'une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur \mathbb{R} telle que : g' = g et g(0) = 1.

On peut définir pour tout x réel une fonction u par

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \operatorname{pour} \operatorname{tout} x.$$

$$u(x) = \frac{g(x)}{\exp(x)} \operatorname{car} \exp(x) \neq 0 \text{ pour tout } x.$$
Alors $(u(x))' = \frac{g'(x) \exp(x) - g(x) \exp'(x)}{(\exp(x))^2} = \frac{g(x) \exp(x) - g(x) \exp(x)}{(\exp(x))^2} = 0$

La fonction u de dérivée nulle est donc constante sur \mathbb{R} et puisque u(0) = 1, on en déduit que u(x) = 1 pour tout x réel. Ceci signifie que $g(x) = \exp(x)$ pour tout x réel.

La fonction exponentielle est strictement positive : pour tout x réel, $\exp(x) > 0$.

La fonction exponentielle est strictement positive : pour tout x réel, $\exp(x) > 0$.

Démonstration : la fonction exponentielle est continue sur ℝ et
exp(0) = 1 ; s'il existe un réel x tel que $exp(x) < 0$ alors d'après le théorème des valeurs intermédiaires,
, , , , , , , , , , , , , , , , , , ,

La fonction exponentielle est strictement positive : pour tout x réel, $\exp(x) > 0$.

Démonstration : la fonction exponentielle est continue sur \mathbb{R} et $\exp(0) = 1$; s'il existe un réel x tel que $\exp(x) < 0$ alors d'après le théorème des valeurs intermédiaires, il existe a réel tel que $\exp(a) = 0$. Or ceci est impossible puisque pour tout réel x, $\exp(x) \neq 0$.

_	,	•	
	20	Oro	ma
	ш	ule	me

Quels que soient les réels a et b :

Théorème

Quels que soient les réels a et b :

$$\exp(a+b) = \exp(a)\exp(b)$$

Soit *a* un réel quelconque. On pose, pour tout *x* réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)} ;$$

Soit *a* un réel quelconque. On pose, pour tout *x* réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)}$$

$$g'(x) =$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)}$$

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2}$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)}$$

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2}$$
$$= \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)}$$

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2}$$
$$= \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

donc
$$g'(x) = 0$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

soit
$$g(x) =$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

soit
$$g(x) = g(0) =$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

soit
$$g(x) = g(0) = \frac{\exp(a)}{\exp(0)} =$$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

soit
$$g(x) = g(0) = \frac{\exp(a)}{\exp(0)} = \exp(a)$$
 pour tout x réel.

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

donc g'(x) = 0 pour tout x réel. La fonction g de dérivée nulle est donc constante sur \mathbb{R} ,

soit
$$g(x) = g(0) = \frac{\exp(a)}{\exp(0)} = \exp(a)$$
 pour tout x réel.

En particulier pour x = b, on a : g(b) =

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

soit
$$g(x) = g(0) = \frac{\exp(a)}{\exp(0)} = \exp(a)$$
 pour tout x réel.

En particulier pour
$$x = b$$
, on a : $g(b) = \frac{\exp(a + b)}{\exp(b)} = \exp(a)$

Soit a un réel quelconque. On pose, pour tout x réel,

$$g(x) = \frac{\exp(x+a)}{\exp(x)};$$

g est définie et dérivable sur $\mathbb R$ avec

$$g'(x) = \frac{\exp'(x+a)\exp(x) - \exp(x+a)\exp'(x)}{(\exp(x))^2} = \frac{\exp(x+a)\exp(x) - \exp(x+a)\exp(x)}{(\exp(x))^2}$$

donc g'(x) = 0 pour tout x réel. La fonction g de dérivée nulle est donc constante sur \mathbb{R} ,

soit
$$g(x) = g(0) = \frac{\exp(a)}{\exp(0)} = \exp(a)$$
 pour tout x réel.

En particulier pour x = b, on a : $g(b) = \frac{\exp(a+b)}{\exp(b)} = \exp(a)$ d'où on déduit que $\exp(a+b) = \exp(a) \exp(b)$.

$$exp(x) =$$

$$\exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) =$$

$$\exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) = \exp(\frac{x}{2}) \exp(\frac{x}{2}) =$$

$$\exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) = \exp(\frac{x}{2}) \exp(\frac{x}{2}) = \left(\exp(\frac{x}{2})\right)^2.$$

Soit x un réel quelconque. A l'aide de la relation fonctionnelle, on peut écrire :

$$\exp(x) = \exp(\frac{x}{2} + \frac{x}{2}) = \exp(\frac{x}{2}) \exp(\frac{x}{2}) = \left(\exp(\frac{x}{2})\right)^2.$$

Puisqu'un carré est positif et que $exp(x) \neq 0$, on montre à nouveau que exp(x) > 0 pour tout x.

Propriété		
Quels que soient les réels a, b et l'entier relatif n :		
·	·	

$$\exp(a-b) =$$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$
 $\exp(-b) =$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$

$$\exp(-b) = \frac{1}{\exp(b)}$$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$
 $\exp(-b) = \frac{1}{\exp(b)}$

$$\exp(na) =$$

$$\exp(a-b) = \frac{\exp(a)}{\exp(b)}$$
 $\exp(-b) = \frac{1}{\exp(b)}$

$$\exp(na) = (\exp a)^n$$

On utilise la relation fonctionnelle :

• $\exp(a) =$

$$\bullet \quad \exp(a) = \exp((a-b) + b) =$$

$$\bullet \quad \exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$$

On utilise la relation fonctionnelle :

 $\bullet \quad \exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$

et puisque $exp(b) \neq 0$, on en déduit :

On utilise la relation fonctionnelle :

$$\bullet \quad \exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$$

et puisque $exp(b) \neq 0$, on en déduit : exp(a - b) =

•
$$\exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$$

et puisque
$$\exp(b) \neq 0$$
, on en déduit : $\exp(a - b) = \frac{\exp(a)}{\exp(b)}$

- $\exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$
- et puisque $\exp(b) \neq 0$, on en déduit : $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$
- l'égalité précédente avec a=0 donne

$$\exp(-b) =$$

- $\exp(a) = \exp((a-b)+b) = \exp(a-b)\exp(b)$
- et puisque $\exp(b) \neq 0$, on en déduit : $\exp(a b) = \frac{\exp(a)}{\exp(b)}$
- l'égalité précédente avec a=0 donne

$$\exp(-b) = \frac{\exp(0)}{\exp(b)} =$$

- $\bullet \quad \exp(a) = \exp((a-b) + b) = \exp(a-b) \exp(b)$
- et puisque $\exp(b) \neq 0$, on en déduit : $\exp(a b) = \frac{\exp(a)}{\exp(b)}$
- l'égalité précédente avec a=0 donne

$$\exp(-b) = \frac{\exp(0)}{\exp(b)} = \frac{1}{\exp(b)}$$

• Soit P_n la propriété " $exp(na) = (exp a)^n$ ";

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $exp(0 \times a) =$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $exp(0 \times a) = exp(0) =$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $exp(0 \times a) = exp(0) = 1$ et

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation :
$$exp(0 \times a) = exp(0) = 1$$
 et $(exp a)^0 = 1$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$.

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) =$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) = \exp(ka+a) =$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) = \exp(ka+a) = \exp(ka) \exp(a) =$

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) = \exp(ka+a) = \exp(ka) \exp(a) = (\exp a)^k \exp(a)$ d'après l'hypothèse de récurrence,

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) = \exp(ka+a) = \exp(ka) \exp(a) = (\exp a)^k \exp(a)$ d'après l'hypothèse de récurrence, donc $\exp((k+1)a) = (\exp(a))^{k+1}$ et P_{k+1} est vraie.

• Soit P_n la propriété " $\exp(na) = (\exp a)^n$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\exp(0 \times a) = \exp(0) = 1$ et $(\exp a)^0 = 1$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\exp(ka) = (\exp a)^k$. Alors, $\exp((k+1)a) = \exp(ka+a) = \exp(ka) \exp(a) = (\exp a)^k \exp(a)$ d'après l'hypothèse de récurrence, donc $\exp((k+1)a) = (\exp(a))^{k+1}$ et P_{k+1} est vraie.

Conclusion : P_n est vraie pour tout $n \in \mathbb{N}$.

Maintenant, si n est un entier relatif négatif, $exp(na) = \dots$

$$\exp(na) = \frac{1}{\exp(-na)}$$

$$\exp(na) = \frac{1}{\exp(-na)}$$

or
$$(-n) \in \mathbb{N}$$
; on peut donc écrire $\exp((-n)a) = \dots$

$$\exp(na) = \frac{1}{\exp(-na)}$$

or
$$(-n) \in \mathbb{N}$$
; on peut donc écrire $\exp((-n)a) = (\exp(a))^{-n}$

$$\exp(na) = \frac{1}{\exp(-na)}$$

or
$$(-n) \in \mathbb{N}$$
; on peut donc écrire $\exp((-n)a) = (\exp(a))^{-n}$

On en déduit que :
$$exp(na) = \dots$$

$$\exp(na) = \frac{1}{\exp(-na)}$$

or
$$(-n) \in \mathbb{N}$$
; on peut donc écrire $\exp((-n)a) = (\exp(a))^{-n}$

On en déduit que :
$$\exp(na) = \frac{1}{(\exp(a))^{-n}} = (\exp a)^n$$
.

On note e l'image de 1 par la fonction exponentielle :

.

On note e l'image de 1 par la fonction exponentielle :

$$exp(1) = e$$
.

On note e l'image de 1 par la fonction exponentielle :

$$\exp(1) = e$$
.

e \simeq 2,718 . . . et n'est pas un nombre rationnel ; c'est un nombre qui a des propriétés commune à celle de π .

On note e l'image de 1 par la fonction exponentielle :

$$exp(1) = e$$
.

e \simeq 2,718... et n'est pas un nombre rationnel; c'est un nombre qui a des propriétés commune à celle de π .

On peut alors écrire pour tout $n \in \mathbb{Z}$, $\exp(n) = \dots$

On note e l'image de 1 par la fonction exponentielle :

$$\exp(1) = e$$
.

e \simeq 2,718 . . . et n'est pas un nombre rationnel ; c'est un nombre qui a des propriétés commune à celle de π .

On peut alors écrire pour tout $n \in \mathbb{Z}$, $\exp(n) = \exp(n \times 1) = (\exp(1))^n = e^n$.

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

.

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

$$exp(x) = e^x$$

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

$$exp(x) = e^x$$

On peut donc écrire : $e^0 = \dots$

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

$$exp(x) = e^x$$

On peut donc écrire : $e^0 = 1$

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

$$exp(x) = e^x$$

On peut donc écrire : $e^0 = 1$ et $(e^x)' = \dots$

Notation

Pour tout $x \in \mathbb{R}$, l'image de x par la fonction exponentielle se note :

$$exp(x) = e^x$$

On peut donc écrire : $e^0 = 1$ et $(e^x)' = e^x$.

 Quels que soient les réels a, b et l'entier relatif n :				

$$e^{a+b} =$$

$$e^{a+b} = e^a e^b$$
 $e^{a-b} =$

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} =$

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} = \frac{1}{e^b}$

$$e^{a-b} = \frac{e^a}{e^b}$$

$$e^{-b} = \frac{1}{e^b}$$

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} = \frac{1}{e^b}$ $e^{na} = (e^a)^n$

$$e^{a-b} = rac{e^a}{e^b}$$

$$e^{-b} = \frac{1}{e^b}$$

$$e^{na} = (e^a)^n$$

Quels que soient les réels a, b et l'entier relatif n :

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} = \frac{1}{e^b}$ $e^{na} = (e^a)^n$

De plus, quels que soient les réels a, b: $e^{ab} = (e^a)^b$

Quels que soient les réels a, b et l'entier relatif n :

$$e^{a+b} = e^a e^b$$
 $e^{a-b} = \frac{e^a}{e^b}$ $e^{-b} = \frac{1}{e^b}$ $e^{na} = (e^a)^n$

De plus, quels que soient les réels a,b: $e^{ab}=(e^a)^b$ Par exemple : $\left(e^{\frac{x}{2}}\right)^2=e^x$ donc $e^{\frac{x}{2}}=\sqrt{e^x}$ et en particulier, $e^{\frac{1}{2}}=\sqrt{e}$.

Théorème)		
La	fonction	exponentielle	est

Théorème

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Théorème

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Par définition, $\exp'(x) = \exp(x)$ et $\exp(x) > 0$ pour tout x réel; puisque sa dérivée est strictement positive sur \mathbb{R} , on conclut que \exp est strictement croissante sur \mathbb{R} .

Corollaire)

$$a < b \iff$$

$$a < b \iff e^a < e^b$$
 et $a = b \iff$

$$a < b \iff e^a < e^b$$
 et $a = b \iff e^a = e^b$

$$a < b \Longleftrightarrow e^a < e^b$$
 et $a = b \Longleftrightarrow e^a = e^b$

En particulier : si x < 0 alors $e^x < 1$ et si x > 0 alors $e^x > 1$.