Chapitre 3 : Compléments sur les dérivées

1 Calcul de dérivées

1.1 Dérivée de $x \mapsto f(ax + b)$

Théorème

On considère une fonction f dérivable sur un intervalle I et deux réels a et b fixés. On note J l'intervalle formé des réels x tels que $(ax + b) \in I$, et la fonction $g : x \longmapsto f(ax + b)$.

Alors la fonction g est dérivable sur J et, pour tout x de J:

$$g'(x) = \dots$$

1.2 Dérivée de $x \longmapsto \sqrt{u(x)}$ et $x \longmapsto (u(x))^n$

Propriété

On considère une fonction u strictement positive et dérivable sur un intervalle I. La fonction $g: x \longmapsto \sqrt{u(x)}$ est dérivable sur I et, pour tout réel x de I:

$$g'(x) = \dots$$

On retient :
$$(\sqrt{u})' = \dots$$

Propriété

Soit u une fonction définie et dérivable sur un intervalle I, et soit n un entier naturel.

- Si $n \ge 1$, alors la fonction u^n est dérivable sur I et $(u^n)' = \dots$
- Si $n \ge 1$, alors la fonction $\frac{1}{u^n}$ est dérivable pour tout réel x tel que $u(x) \ne 0$ et :

$$\left(\frac{1}{u^n}\right)' = \dots$$
 que l'on note aussi : $(u^{-n})' = \dots$

Remarque: ces deux propriétés sont des cas particuliers de la dérivée d'une fonction composée

$$x \longmapsto v(u(x))$$

On admettra le résultat général : $(v \circ u)' = (v(u(x)))' = \dots$

Preuve de la propriété 2 :