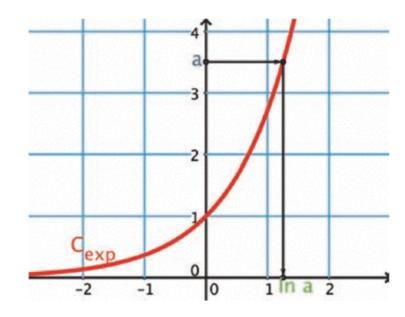
1.

Fonction logarithme népérien

La fonction exponentielle est continue et strictement croissante sur \mathbb{R} et $\lim_{x\to-\infty} \mathrm{e}^x = 0$ et $\lim_{x\to+\infty} \mathrm{e}^x = +\infty$. Donc, d'après le théorème des valeurs intermédiaires, pour tout réel $a\in]0;+\infty[$, l'équation $\mathrm{e}^x=a$ admet une unique solution dans \mathbb{R} .



DÉFINITION

- On appelle **logarithme népérien** du réel strictement positif a, l'unique solution de l'équation $e^x = a$. Le logarithme népérien de a est noté $\ln(a)$ ou $\ln a$.
- La fonction logarithme népérien, notée ln, est la fonction qui, à tout réel x > 0, associe le réel $\ln x$.
- Exemple D'après la calculatrice : $ln(0,8) \approx -0,223$; $ln(2,5) \approx 0,916$.

CONSÉQUENCE:

- Pour tout réel a > 0 et pour tout réel b, on a l'équivalence : $\ln(a) = b \iff a = e^b$.
- $\ln(1) = 0 \text{ car } e^0 = 1.$
- $\ln(e) = 1 \text{ car } e^1 = e.$
- Exemple Résoudre l'équation $e^{3x-1} = 5$.
- Pour tout réel x, $e^{3x-1} = 5 \iff 3x 1 = \ln 5 \iff x = \frac{\ln 5 + 1}{3}$.

PROPRIÉTÉS : Réciprocité

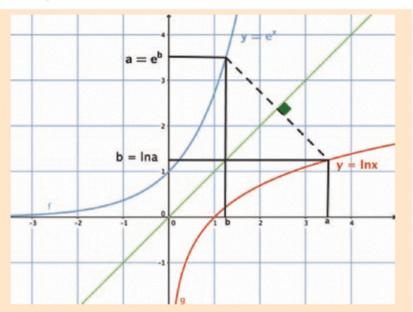
- 1) Pour tout réel x > 0, $e^{\ln x} = x$.
- 2) Pour tout réel x, $ln(e^x) = x$.

PREUVE

- Pour tout réel x > 0, l'équation $e^t = x$, d'inconnue t, a pour solution $t = \ln x$. Donc $e^{\ln x} = x$.
- Pour tout réel x, par définition, $\ln(e^x)$ est l'unique solution de l'équation $e^t = e^x$, d'inconnue t donc $\ln(e^x) = x$.
- Exemples $ln(e^2) = 2 \text{ et } e^{ln 2} = 2.$

■ PROPRIÉTÉ : Courbes des fonctions In et exp

Dans un repère orthonormé, les courbes représentatives des fonctions ln et exp sont symétriques par rapport à la droite d'équation y = x.



■ PROPRIÉTÉ : Sens de variation

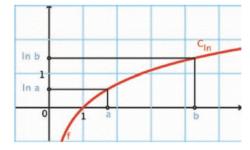
La fonction ln est strictement croissante sur $]0; +\infty[$.

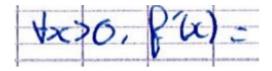
PREUVE Soit a et b deux réels tels que 0 < a < b. On a : $e^{\ln a} = a$ et $e^{\ln b} = b$.

Donc $e^{\ln a} < e^{\ln b}$. Comme la fonction exp est strictement croissante sur \mathbb{R} , on en déduit que : $\ln a < \ln b$.

Conséquence:

Pour tous les réels a > 0 et b > 0,



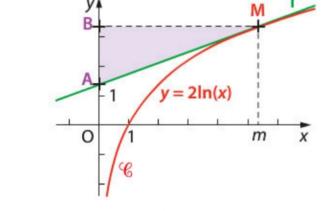


12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

 m est un nombre strictement positif; M est le

point de \mathscr{C} d'abscisse m et B son projeté orthogonal sur l'axe des ordonnées.

La tangente T en M à \mathscr{C} coupe l'axe (Oy) en A.

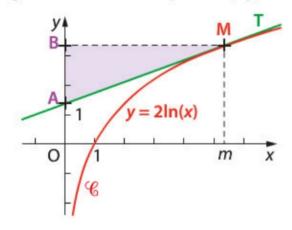


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- en O ?b) Exprimez l'aire du triangle ABM en fonction de m. Que constatez-vous ?

2. a) Comment choisir *m* pour que le point A soit

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à \mathscr{C} coupe l'axe (Oy) en A.



- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

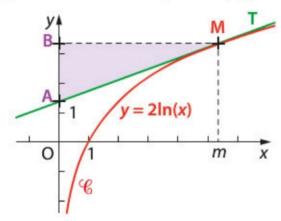
■ PROPRIÉTÉ : Tangente en un point à une courbe

Soit f une fonction dérivable en a et \mathscr{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathscr{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

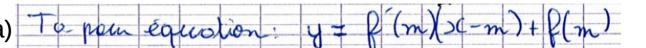


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

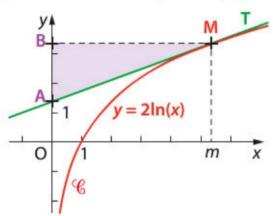
Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

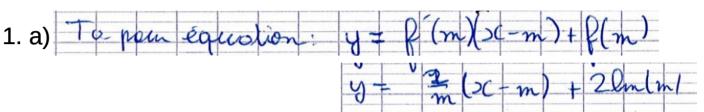


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

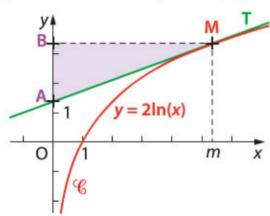
Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

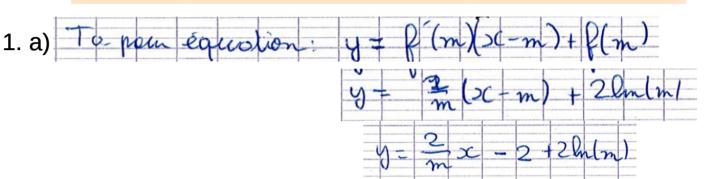


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

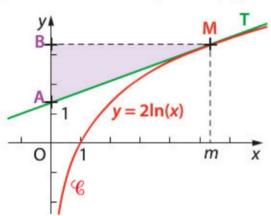
Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

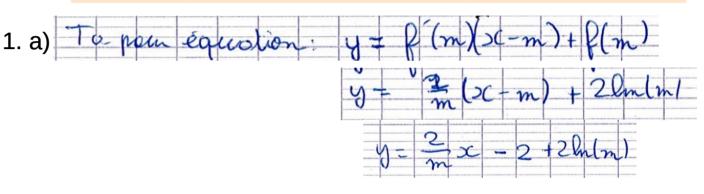


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

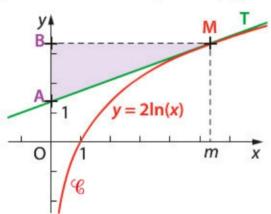
$$y = f'(a)(x - a) + f(a).$$



L. b) le point A est sur lu droito T

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

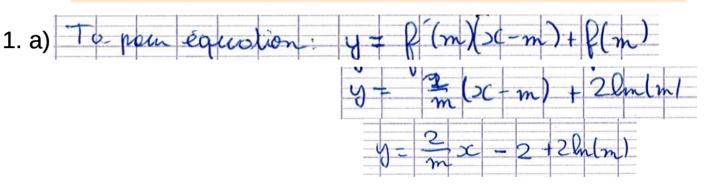


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

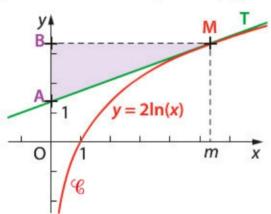
$$y = f'(a)(x - a) + f(a).$$



1. b) le point A est sur le droit T denc yA = 3 CA - 2+2ln(m

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.



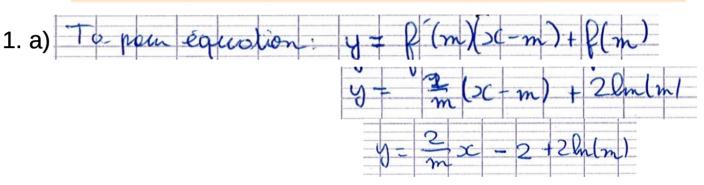
- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

1. b)

Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



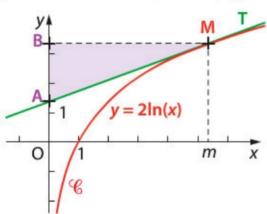
le point A est sur lu droi 0 T

donc yA = 2 + 2 ln(m)

On A o pour abscisse o. (d'où z_A. = 4

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

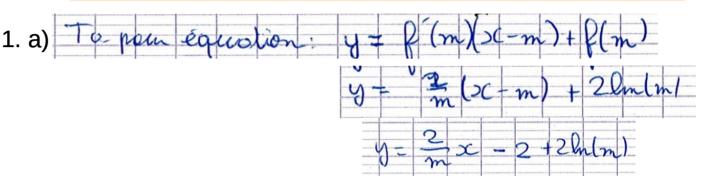


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



1. b) le point A est sur lu droito T

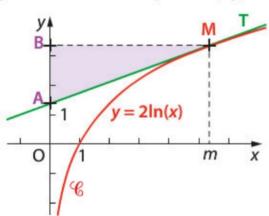
denc yA = 2 + 2ln(m)

O A o pour abscisse o. (d'où 2A = 0,

Denc yA = 2 0 - 2 + 2ln(m)

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.

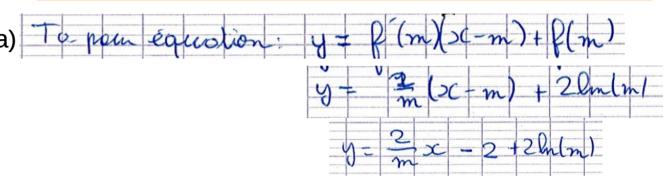


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

■ PROPRIÉTÉ : Tangente en un point à une courbe

Soit f une fonction dérivable en a et \mathcal{C}_f sa courbe représentative dans un repère du plan. Une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$



1. b) le point A est sin lu droito |

denc yA = = cA - 2+2ln(m)

O A o pour abscisse o. (d'où zA = 0)

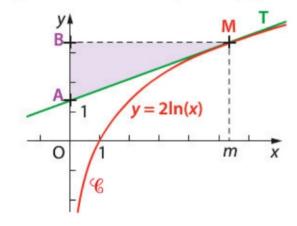
Denc yo = 2 0 - 2+2ln(m)

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

 m est un nombre strictement positif; M est le

point de \mathscr{C} d'abscisse m et B son projeté orthogonal sur l'axe des ordonnées.

La tangente T en M à ${\mathscr C}$ coupe l'axe (Oy) en A.

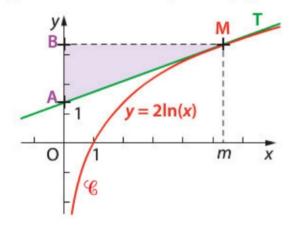


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

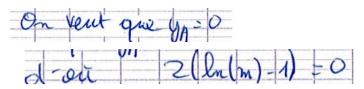
2. a) On vent que yn c

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.

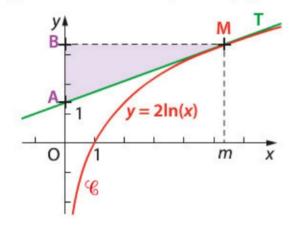


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

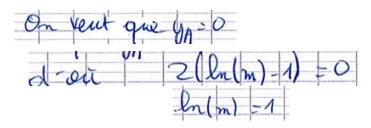


12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.

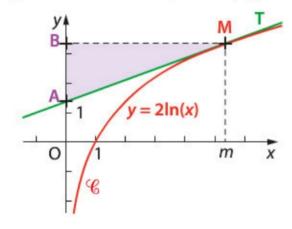


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

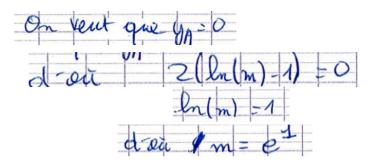


12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.

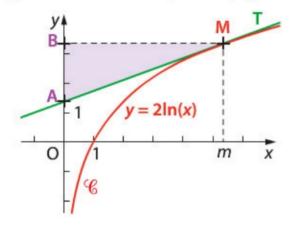


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

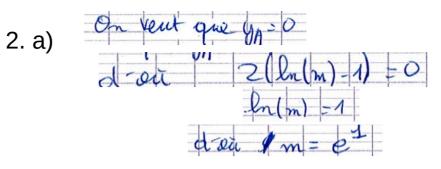


12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.



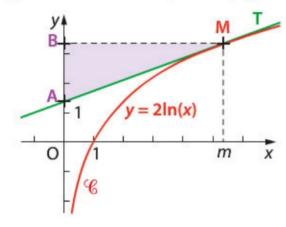
- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?



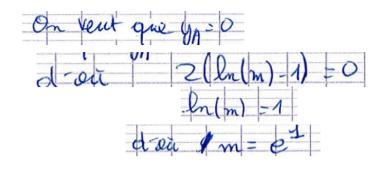
2. b) $A(0; 2(\ln(m) - 1)$

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.



- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

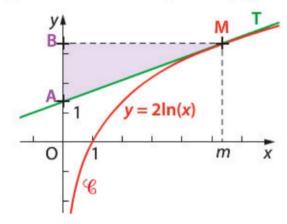


2. b)
$$A(0; 2(\ln(m) + 1))$$

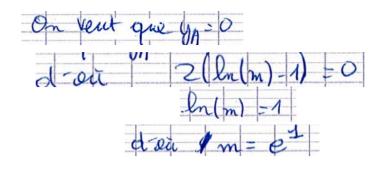
 $B(0; 2\ln(m))$

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

La tangente T en M à $\mathscr C$ coupe l'axe (Oy) en A.



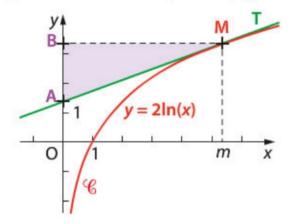
- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?



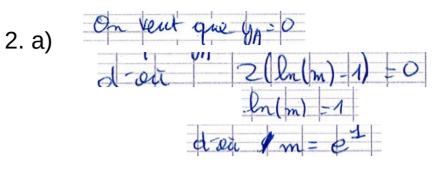
2. b)
$$A(0; 2(\ln(m) + 1))$$

 $B(0; 2\ln(m))$
 $M(m, 2\ln(m))$

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.



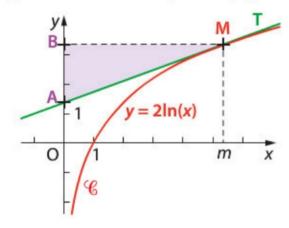
- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?



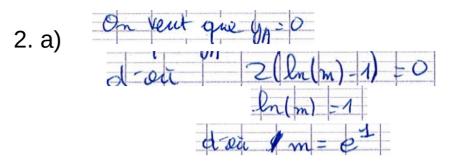
2. b)
$$A(0; 2(\ln(m) + 1))$$

 $B(0; 2(\ln(m)))$
 $M(m; 2(\ln(m)))$
 $AB = 2(\ln(m) - (2(\ln(m) + 2))$

12 Dans un repère orthonormé, la courbe
$$\mathscr C$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.



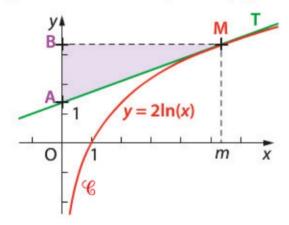
- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?



2. b)
$$A(0; 2(\ln(m) + 1))$$

 $B(0; 2\ln(m))$
 $M(m; 2\ln(m))$
 $AB = 2\ln(m) - (2\ln(m) - 2)$ $BM = m$

12 Dans un repère orthonormé, la courbe
$$\mathscr C$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.

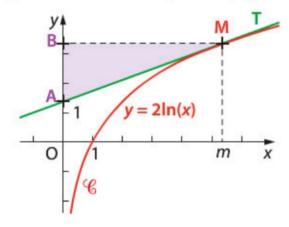


- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?

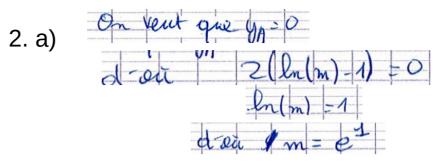


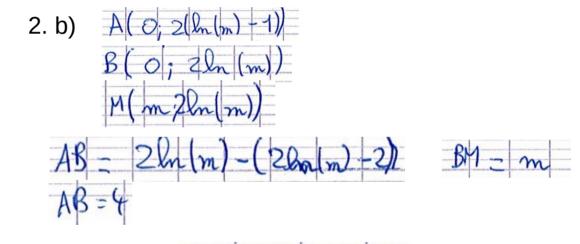
2. b)
$$A(0; 2(\ln(m) + 1))$$
 $B(0; 2(\ln(m) + 1))$
 $M(m, 2\ln(m))$
 $AB = 2\ln(m) - (2\ln(m) - 2)$
 $AB = 4$

12 Dans un repère orthonormé, la courbe
$$\mathscr{C}$$
 représente la fonction f définie sur $]0$; $+\infty[$ par : $f(x) = 2 \ln(x)$.



- 1. a) Déterminez une équation de T.
- b) Déduisez-en les coordonnées du point A.
- **2.** a) Comment choisir *m* pour que le point A soit en O?
- **b)** Exprimez l'aire du triangle ABM en fonction de *m*. Que constatez-vous ?





- 39 Indiquez, dans chaque cas, pour quels nombres x l'expression proposée a un sens.
- a) $\frac{1}{\ln(x)}$. b) $\frac{\ln(x+1)}{x}$
- c) $\ln(x+1) \ln(x-1)$.

Indiquez, dans chaque cas, pour quels nombres x l'expression proposée a un sens.

a)
$$\frac{1}{\ln(x)}$$

$$\mathbf{b)} \; \frac{\ln(x+1)}{x}$$

c)
$$\ln(x+1) - \ln(x-1)$$
.

Indiquez, dans chaque cas, pour quels nombres x l'expression proposée a un sens.

a)
$$\frac{1}{\ln(x)}$$

b)
$$\frac{\ln(x+1)}{x}$$
.

c)
$$\ln(x+1) - \ln(x-1)$$
.

Indiquez, dans chaque cas, pour quels nombres x l'expression proposée a un sens.

a)
$$\frac{1}{\ln(x)}$$

$$b) \frac{\ln(x+1)}{x} .$$

c)
$$\ln(x+1) - \ln(x-1)$$
.

Résoudre $\ln(1-x)=3$ On doit avoir $1-\infty$, soit ∞ < 1

d-où $\ln(1-x)=\ln(e^3)$ $1-x=e^3$ on $1-e^3 < 1$ $-x=e^3-1$ $-x=e^3-1$ $-x=e^3-1$ $-x=e^3$