Baccalauréat S Métropole-La Réunion

EXERCICE 2 5 POINTS

Commun à tous les candidats

Soit f la fonction définie et dérivable sur l'intervalle $[0; +\infty[$ telle que :

$$f(x) = \frac{x}{e^x - x}$$

On admet que la fonction f est positive sur l'intervalle $[0; +\infty[$. On note $\mathcal C$ la courbe représentative de la fonction f dans un repère orthogonal du plan. La courbe $\mathcal C$ est représentée en annexe, **à rendre avec la copie**.

Partie A

Soit la suite (I_n) définie pour tout entier naturel n par $I_n = \int_0^n f(x) dx$.

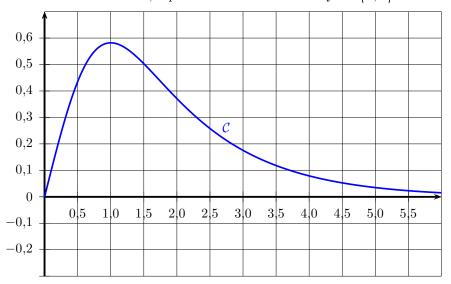
On ne cherchera pas à calculer la valeur exacte de I_n en fonction de n.

- 1. Montrer que la suite (I_n) est croissante.
- **2.** On admet que pour tout réel x de l'intervalle $[0; +\infty[, e^x x \geqslant \frac{e^x}{2}]$
 - **a.** Montrer que, pour tout entier naturel $n, I_n \leqslant \int_0^n 2x e^{-x} dx$.
 - **b.** On admet que pour tout $n \in \mathbb{N}$, $\int_0^n x e^{-x} dx \le 1$ En déduire que, pour tout entier naturel $n, I_n \le 2$.
- 3. Montrer que la suite (I_n) est convergente. On ne demande pas la valeur de sa limite.

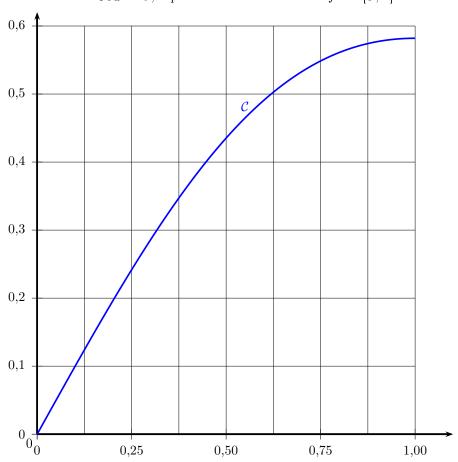
Partie B

On considère l'algorithme suivant dans lequel les variables sont

- K et i des entiers naturels, K étant non nul;
- A, x et h des réels.
- 1. Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour K=4. Les valeurs successives de A seront arrondies au millième.


Saisir
$$K$$
 $A \leftarrow 0$
 $x \leftarrow 0$
 $h \leftarrow \frac{1}{K}$
Pour i variant de 1 à K
 $A \leftarrow A + h \times f(x)$
 $x \leftarrow x + h$
Fin Tant que

i	A	x
1		
2		
3		
4		


- 2. En l'illustrant sur l'annexe à rendre avec la copie, donner une interprétation graphique de la valeur de la variable A par cet algorithme pour K=8.
- **3.** Vers que valeur la variable A s'approche t-elle quand K devient grand?

ANNEXE Exercice 2 À rendre avec la copie

Courbe \mathcal{C} , représentative de la fonction f sur $[0\,;\,6]$

Courbe C, représentative de la fonction f sur [0; 1]

